BACKGROUND: Alzheimer’s disease (AD) is common and highly heritable with many genes and gene variants associated with AD in one or more studies, including APOE ε2/ε3/ε4. However, the genetic backgrounds for normal cognition, mild cognitive impairment (MCI) and AD in terms of changes in cerebrospinal fluid (CSF) levels of Aβ1-42, T-tau, and P-tau181P, have not been clearly delineated. We carried out a genome-wide association study (GWAS) in order to better define the genetic backgrounds to these three states in relation to CSF levels.
METHODS: Subjects were participants in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The GWAS dataset consisted of 818 participants (mainly Caucasian) genotyped using the Illumina Human Genome 610 Quad BeadChips. This sample included 410 subjects (119 Normal, 115 MCI and 176 AD) with measurements of CSF Aβ1-42, T-tau, and P-tau181P Levels. We used PLINK to find genetic associations with the three CSF biomarker levels. Association of each of the 498,205 SNPs was tested using additive, dominant, and general association models while considering APOE genotype and age. Finally, an effort was made to better identify relevant biochemical pathways for associated genes using the ALIGATOR software.
RESULTS: We found that there were some associations with APOE genotype although CSF levels were about the same for each subject group; CSF Aβ1-42 levels decreased with APOE gene dose for each subject group. T-tau levels tended to be higher among AD cases than among normal subjects. From adjusted result using APOE genotype and age as covariates, no SNP was associated with CSF levels among AD subjects. CYP19A1 ‘aromatase’ (rs2899472), NCAM2, and multiple SNPs located on chromosome 10 near the ARL5B gene demonstrated the strongest associations with Aβ1-42 in normal subjects. Two genes found to be near the top SNPs, CYP19A1 (rs2899472, p = 1.90 × 10(-7)) and NCAM2 (rs1022442, p = 2.75 × 10(-7)) have been reported as genetic factors related to the progression of AD from previous studies. In AD subjects, APOE ε2/ε3 and ε2/ε4 genotypes were associated with elevated T-tau levels and ε4/ε4 genotype was associated with elevated T-tau and P-tau181P levels. Pathway analysis detected several biological pathways implicated in Normal with CSF β-amyloid peptide (Aβ1-42).
CONCLUSIONS: Our genome-wide association analysis identified several SNPs as important factors for CSF biomarker. We also provide new evidence for additional candidate genetic risk factors from pathway analysis that can be tested in further studies.
Blog
The functional structure of all biologically active molecules is dependent on intra- and inter-molecular interactions. This is especially evident for RNA molecules whose functionality, maturation, and regulation require formation of correct secondary structure through encoded base-pairing interactions. Unfortunately, intra- and inter-molecular base-pairing information is lacking for most RNAs. Here, we marry classical nuclease-based structure mapping techniques with high-throughput sequencing technology to interrogate all base-paired RNA in Arabidopsis thaliana and identify ∼200 new small (sm)RNA-producing substrates of RNA-DEPENDENT RNA POLYMERASE6. Our comprehensive analysis of paired RNAs reveals conserved functionality within introns and both 5′ and 3′ untranslated regions (UTRs) of mRNAs, as well as a novel population of functional RNAs, many of which are the precursors of smRNAs. Finally, we identify intra-molecular base-pairing interactions to produce a genome-wide collection of RNA secondary structure models. Although our methodology reveals the pairing status of RNA molecules in the absence of cellular proteins, previous studies have demonstrated that structural information obtained for RNAs in solution accurately reflects their structure in ribonucleoprotein complexes. Furthermore, our identification of RNA-DEPENDENT RNA POLYMERASE6 substrates and conserved functional RNA domains within introns and both 5′ and 3′ untranslated regions (UTRs) of mRNAs using this approach strongly suggests that RNA molecules are correctly folded into their secondary structure in solution. Overall, our findings highlight the importance of base-paired RNAs in eukaryotes and present an approach that should be widely applicable for the analysis of this key structural feature of RNA.
BACKGROUND: Human brain aging has received special attention in part because of the elevated risks of neurodegenerative disorders such as Alzheimer’s disease in seniors. Recent technological advances enable us to investigate whether similar mechanisms underlie aging and neurodegeneration, by quantifying the similarities and differences in their genome-wide gene expression profiles.
PRINCIPAL FINDINGS: We have developed a computational method for assessing an individual’s “physiological brain age” by comparing global mRNA expression datasets across a range of normal human brain samples. Application of this method to brains samples from select regions in two diseases–Alzheimer’s disease (AD, superior frontal gyrus), frontotemporal lobar degeneration (FTLD, in rostral aspect of frontal cortex ∼BA10)–showed that while control cohorts exhibited no significant difference between physiological and chronological ages, FTLD and AD exhibited prematurely aged expression profiles.
CONCLUSIONS: This study establishes a quantitative scale for measuring premature aging in neurodegenerative disease cohorts, and it identifies specific physiological mechanisms common to aging and some forms of neurodegeneration. In addition, accelerated expression profiles associated with AD and FTLD suggest some common mechanisms underlying the risk of developing these diseases.
BACKGROUND: Genome-wide studies on autism spectrum disorders (ASDs) have mostly focused on large-scale population samples, but examination of rare variations in isolated populations may provide additional insights into the disease pathogenesis.
METHODS: As a first step in the genetic analysis of ASD in Croatia, we characterized genetic variation in a sample of 103 subjects with ASD and 203 control individuals, who were genotyped using the Illumina HumanHap550 BeadChip. We analyzed the genetic diversity of the Croatian population and its relationship to other populations, the degree of relatedness via Runs of Homozygosity (ROHs), and the distribution of large (>500 Kb) copy number variations.
RESULTS: Combining the Croatian cohort with several previously published populations in the FastME analysis (an alternative to Neighbor Joining) revealed that Croatian subjects cluster, as expected, with Southern Europeans; in addition, individuals from the same geographic region within Europe cluster together. Whereas Croatian subjects could be separated from a sample of healthy control subjects of European origin from North America, Croatian ASD cases and controls are well mixed. A comparison of runs of homozygosity indicated that the number and the median length of regions of homozygosity are higher for ASD subjects than for controls (p = 6 × 10(-3)). Furthermore, analysis of copy number variants found a higher frequency of large chromosomal rearrangements (>2 Mb) in ASD cases (5/103) than in ethnically matched control subjects (1/197, p = 0.019).
CONCLUSIONS: Our findings illustrate the remarkable utility of high-density genotype data for subjects from a limited geographic area in dissecting genetic heterogeneity with respect to population and disease related variation.
MOTIVATION: The rapid development of genotyping technology and extensive cataloguing of single nucleotide polymorphisms (SNPs) across the human genome have made genetic association studies the mainstream for gene mapping of complex human diseases. For many diseases, the most practical approach is the population-based design with unrelated individuals. Although having the advantages of easier sample collection and greater power than family-based designs, unrecognized population stratification in the study samples can lead to both false-positive and false-negative findings and might obscure the true association signals if not appropriately corrected.
METHODS: We report PHYLOSTRAT, a new method that corrects for population stratification by combining phylogeny constructed from SNP genotypes and principal coordinates from multi-dimensional scaling (MDS) analysis. This hybrid approach efficiently captures both discrete and admixed population structures.
RESULTS: By extensive simulations, the analysis of a synthetic genome-wide association dataset created using data from the Human Genome Diversity Project, and the analysis of a lactase-height dataset, we show that our method can correct for population stratification more efficiently than several existing population stratification correction methods, including EIGENSTRAT, a hybrid approach based on MDS and clustering, and STRATSCORE , in terms of requiring fewer random SNPs for inference of population structure. By combining the flexibility and hierarchical nature of phylogenetic trees with the advantage of representing admixture using MDS, our hybrid approach can capture the complex population structures in human populations effectively.
SOFTWARE AVAILABILITY: Codes can be downloaded from http://people.pcbi.upenn.edu/ approximately lswang/phylostrat/
CONTACT: mingyao@upenn.edu; iswang@upenn.edu.
SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
The human Werner and Bloom syndromes (WS and BS) are caused by deficiencies in the WRN and BLM RecQ helicases, respectively. WRN, BLM and their Saccharomyces cerevisiae homologue Sgs1, are particularly active in vitro in unwinding G-quadruplex DNA (G4-DNA), a family of non-canonical nucleic acid structures formed by certain G-rich sequences. Recently, mRNA levels from loci containing potential G-quadruplex-forming sequences (PQS) were found to be preferentially altered in sgs1Delta mutants, suggesting that G4-DNA targeting by Sgs1 directly affects gene expression. Here, we extend these findings to human cells. Using microarrays to measure mRNAs obtained from human fibroblasts deficient for various RecQ family helicases, we observe significant associations between loci that are upregulated in WS or BS cells and loci that have PQS. No such PQS associations were observed for control expression datasets, however. Furthermore, upregulated genes in WS and BS showed no or dramatically reduced associations with sequences similar to PQS but that have considerably reduced potential to form intramolecular G4-DNA. These findings indicate that, like Sgs1, WRN and BLM can regulate transcription globally by targeting G4-DNA.
The problem of Alzheimer’s disease (AD) exemplifies the challenges of dealing with a broad range of aging-related chronic disorders that require long-term, labor-intensive, and expensive care. As the baby boom generation ages and brain diseases become more prevalent, the need to confront the pending health care crisis is more urgent than ever before. Indeed, there is now a critical need to expand significantly the national effort to solve the problem of AD, with special focus on prevention. The Campaign to Prevent Alzheimer’s Disease by 2020 (PAD2020) aims to create a new paradigm for planning and supporting the organization of worldwide cooperative research networks to develop new technologies for early detection and treatments of aging-related memory and motor impairments. PAD 2020 is developing an implementation plan to justify (1) increasing the federal budget for research, (2) developing novel national resources to discover new interventions for memory and motor disorders, and (3) creating innovative and streamlined decision-making processes for selecting and supporting new ideas. Since 1978 the National Institute on Aging or National Institute of Health (NIH) established an extensive national network of AD research facilities at academic institutions including AD Centers (ADCs), Consortium to Establish a Registry for AD, AD Cooperative Study (ADCS), AD Drug Discovery Program, National Alzheimer’s Coordinating Center, National Cell Repository for AD, and AD Neuroimaging Initiative. However, despite the success of these programs and their critical contributions, they are no longer adequate to meet the challenges presented by AD. PAD 2020 is designed to address these changes by improving the efficiency and effectiveness of these programs. For example, the ADCs (P30s and P50s) can be enhanced by converting some into Comprehensive Alzheimer’s Disease Centers (CADCs) to support not only research, but also by being demonstration projects on care/treatment, clinical trials, and education as well as by seamlessly integrating multisite collaborative studies (ADCS, AD Neuroimaging Initiative, Patient Registries, Clinical Data Banks, etc) into a cohesive structure that further enhances the original mission of the National Institute on Aging ADCs. Regional CADCs offer greater efficiency and cost savings while serving as coordinating hubs of existing ADCs, thereby offering greater economies of scale and programmatic integration. The CADCs also broaden the scope of ADC activities to include research on interventions, diagnosis, imaging, prevention trials, and other longitudinal studies that require long-term support. Thus, CADCs can address the urgent need to identify subjects at high risk of AD for prevention trials and very early in the course of AD for clinical trials of disease modification. The enhanced CADCs will allow more flexibility among ADCs by supporting collaborative linkages with other institutions and drawing on a wider expertise from different locations. This perspective article describes the University of Pennsylvania (Penn) CADC Model as an illustrative example of how an existing ADC can be converted into a CADC by better utilization of Penn academic resources to address the wide range of problems concerning AD. The intent of this position paper is to stimulate thinking and foster the development of other or alternative models for a systematic approach to the study of dementia and movement disorders.
Frontotemporal lobar degeneration (FTLD) is the second most common cause of presenile dementia. The predominant neuropathology is FTLD with TAR DNA-binding protein (TDP-43) inclusions (FTLD-TDP). FTLD-TDP is frequently familial, resulting from mutations in GRN (which encodes progranulin). We assembled an international collaboration to identify susceptibility loci for FTLD-TDP through a genome-wide association study of 515 individuals with FTLD-TDP. We found that FTLD-TDP associates with multiple SNPs mapping to a single linkage disequilibrium block on 7p21 that contains TMEM106B. Three SNPs retained genome-wide significance following Bonferroni correction (top SNP rs1990622, P = 1.08 x 10(-11); odds ratio, minor allele (C) 0.61, 95% CI 0.53-0.71). The association replicated in 89 FTLD-TDP cases (rs1990622; P = 2 x 10(-4)). TMEM106B variants may confer risk of FTLD-TDP by increasing TMEM106B expression. TMEM106B variants also contribute to genetic risk for FTLD-TDP in individuals with mutations in GRN. Our data implicate variants in TMEM106B as a strong risk factor for FTLD-TDP, suggesting an underlying pathogenic mechanism.
Sequences with the potential to form intramolecular G-quadruplexes (G4-structures) are found in highly nonrandom distributions in the genomes of diverse organisms. These sequences are associated with nucleic acid metabolic processes ranging from transcription and translation to recombination and telomere function. Here we review different computational methods for identifying potential G4-forming sequences and provide protocols for their implementation. We also discuss methods for assessing the significance and specificity of associations between the sequences and different biological functions.
CD8 T cells, which have a crucial role in immunity to infection and cancer, are maintained in constant numbers, but on antigen stimulation undergo a developmental program characterized by distinct phases encompassing the expansion and then contraction of antigen-specific effector (T(E)) populations, followed by the persistence of long-lived memory (T(M)) cells. Although this predictable pattern of CD8 T-cell responses is well established, the underlying cellular mechanisms regulating the transition to T(M) cells remain undefined. Here we show that tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6), an adaptor protein in the TNF-receptor and interleukin-1R/Toll-like receptor superfamily, regulates CD8 T(M)-cell development after infection by modulating fatty acid metabolism. We show that mice with a T-cell-specific deletion of TRAF6 mount robust CD8 T(E)-cell responses, but have a profound defect in their ability to generate T(M) cells that is characterized by the disappearance of antigen-specific cells in the weeks after primary immunization. Microarray analyses revealed that TRAF6-deficient CD8 T cells exhibit altered expression of genes that regulate fatty acid metabolism. Consistent with this, activated CD8 T cells lacking TRAF6 display defective AMP-activated kinase activation and mitochondrial fatty acid oxidation (FAO) in response to growth factor withdrawal. Administration of the anti-diabetic drug metformin restored FAO and CD8 T(M)-cell generation in the absence of TRAF6. This treatment also increased CD8 T(M) cells in wild-type mice, and consequently was able to considerably improve the efficacy of an experimental anti-cancer vaccine.