Blog

Autism spectrum disorders (ASD) are believed to have genetic and environmental origins, yet in only a modest fraction of individuals can specific causes be identified. To identify further genetic risk factors, here we assess the role of de novo mutations in ASD by sequencing the exomes of ASD cases and their parents (n = 175 trios). Fewer than half of the cases (46.3%) carry a missense or nonsense de novo variant, and the overall rate of mutation is only modestly higher than the expected rate. In contrast, the proteins encoded by genes that harboured de novo missense or nonsense mutations showed a higher degree of connectivity among themselves and to previous ASD genes as indexed by protein-protein interaction screens. The small increase in the rate of de novo events, when taken together with the protein interaction results, are consistent with an important but limited role for de novo point mutations in ASD, similar to that documented for de novo copy number variants. Genetic models incorporating these data indicate that most of the observed de novo events are unconnected to ASD; those that do confer risk are distributed across many genes and are incompletely penetrant (that is, not necessarily sufficient for disease). Our results support polygenic models in which spontaneous coding mutations in any of a large number of genes increases risk by 5- to 20-fold. Despite the challenge posed by such models, results from de novo events and a large parallel case-control study provide strong evidence in favour of CHD8 and KATNAL2 as genuine autism risk factors.

Human neurodegenerative diseases have the temporal hallmark of afflicting the elderly population. Ageing is one of the most prominent factors to influence disease onset and progression, yet little is known about the molecular pathways that connect these processes. To understand this connection it is necessary to identify the pathways that functionally integrate ageing, chronic maintenance of the brain and modulation of neurodegenerative disease. MicroRNAs (miRNA) are emerging as critical factors in gene regulation during development; however, their role in adult-onset, age-associated processes is only beginning to be revealed. Here we report that the conserved miRNA miR-34 regulates age-associated events and long-term brain integrity in Drosophila, providing a molecular link between ageing and neurodegeneration. Fly mir-34 expression exhibits adult-onset, brain-enriched and age-modulated characteristics. Whereas mir-34 loss triggers a gene profile of accelerated brain ageing, late-onset brain degeneration and a catastrophic decline in survival, mir-34 upregulation extends median lifespan and mitigates neurodegeneration induced by human pathogenic polyglutamine disease protein. Some of the age-associated effects of miR-34 require adult-onset translational repression of Eip74EF, an essential ETS domain transcription factor involved in steroid hormone pathways. Our studies indicate that miRNA-dependent pathways may have an impact on adult-onset, age-associated events by silencing developmental genes that later have a deleterious influence on adult life cycle and disease, and highlight fly miR-34 as a key miRNA with a role in this process.

The secondary structure of RNA is necessary for its maturation, regulation, processing, and function. However, the global influence of RNA folding in eukaryotes is still unclear. Here, we use a high-throughput, sequencing-based, structure-mapping approach to identify the paired (double-stranded RNA [dsRNA]) and unpaired (single-stranded RNA [ssRNA]) components of the Drosophila melanogaster and Caenorhabditis elegans transcriptomes, which allows us to identify conserved features of RNA secondary structure in metazoans. From this analysis, we find that ssRNAs and dsRNAs are significantly correlated with specific epigenetic modifications. Additionally, we find key structural patterns across protein-coding transcripts that indicate that RNA folding demarcates regions of protein translation and likely affects microRNA-mediated regulation of mRNAs in animals. Finally, we identify and characterize 546 mRNAs whose folding pattern is significantly correlated between these metazoans, suggesting that their structure has some function. Overall, our findings provide a global assessment of RNA folding in animals.

The pathophysiology of negative affect states in older adults is complex, and a host of central nervous system and peripheral systemic mechanisms may play primary or contributing roles. We conducted an unbiased analysis of 146 plasma analytes in a multiplex biochemical biomarker study in relation to number of depressive symptoms endorsed by 566 participants in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) at their baseline and 1-year assessments. Analytes that were most highly associated with depressive symptoms included hepatocyte growth factor, insulin polypeptides, pregnancy-associated plasma protein-A and vascular endothelial growth factor. Separate regression models assessed contributions of past history of psychiatric illness, antidepressant or other psychotropic medicine, apolipoprotein E genotype, body mass index, serum glucose and cerebrospinal fluid (CSF) τ and amyloid levels, and none of these values significantly attenuated the main effects of the candidate analyte levels for depressive symptoms score. Ensemble machine learning with Random Forests found good accuracy (~80%) in classifying groups with and without depressive symptoms. These data begin to identify biochemical biomarkers of depressive symptoms in older adults that may be useful in investigations of pathophysiological mechanisms of depression in aging and neurodegenerative dementias and as targets of novel treatment approaches.

The best-studied biomarkers of Alzheimer’s disease (AD) are the pathologically-linked cerebrospinal fluid (CSF) proteins amyloid-β 42 (Aβ(1-42)), total tau (t-tau), and tau phosphorylated on amino acid 181 (p-tau(181)). Many laboratories measure these proteins using enzyme-linked immunosorbent assay (ELISA). Multiplex xMAP Luminex is a semi-automated assay platform with reduced intra-sample variance, which could facilitate its use in CLIA-approved clinical laboratories. CSF concentrations of these three biomarkers reported using xMAP technology differ from those measured by the most commonly used ELISA, confounding attempts to compare results. To develop a model for converting between xMAP and ELISA levels of the three biomarkers, we analyzed CSF samples from 140 subjects (59 AD, 30 controls, 34 with mild cognitive impairment, and 17 with Parkinson’s disease, including 1 with dementia). Log-transformation of ELISA and xMAP levels made the variance constant in all three biomarkers and improved the linear regression: t-tau concentrations were highly correlated (r = 0.94); p-tau(181) concentrations by ELISA can be better predicted using both the t-tau and p-tau(181) xMAP values (r = 0.96) as compared to p-tau(181) concentrations alone (r = 0.82); correlation of Aβ(1-42) concentrations was relatively weaker but still high (r = 0.77). Among all six protein/assay combinations, xMAP Aβ(1-42) had the best accuracy for diagnostic classification (88%) between AD and control subjects. In conclusion, our study demonstrates that multiplex xMAP is an appropriate assay platform providing results that can be correlated with research-based ELISA values, facilitating the incorporation of this diagnostic biomarker into routine clinical practice.

B cells are subjected to selection at multiple checkpoints during their development. The selection of Ab H chains is difficult to study because of the large diversity of the CDR3. To study the selection of individual Ab H chain V region genes (V(H)), we performed CDR3 spectratyping of ∼ 75-300 rearrangements per individual V(H) in C57BL6/J mice. We measured the fraction of rearrangements that were in-frame in B cell DNA. We demonstrate that individual V(H)s have different fractions of in-frame rearrangements (IF fractions) ranging from 10 to 90% and that these IF fractions are reproducible in different mice. For most V(H)s, the IF fraction in pro-B cells approximated 33% and then shifted to the nearly final (mature) B cell value by the cycling pre-B cell stage. The frequency of high in-frame (IF) V(H) usage increased in cycling pre-B cells compared with that in pro-B cells, whereas this did not occur for low IF V(H)s. The IF fraction did not shift as much in BCR-expressing B cells and was minimally affected by L chain usage for most V(H). High IF clan II/III V(H)s share more positively charged CDR2 sequences, whereas high IF clan I J558 CDR2 sequences are diverse. These data indicate that individual V(H)s are subjected to differential selection, that V(H) IF fraction is mainly established through pre-BCR-mediated selection, that it may operate differently in clan I versus II/III V(H)s, and that it has a lasting influence on the Ab repertoire.

Multiple sequence alignment is typically the first step in estimating phylogenetic trees, with the assumption being that as alignments improve, so will phylogenetic reconstructions. Over the last decade or so, new multiple sequence alignment methods have been developed to improve comparative analyses of protein structure, but these new methods have not been typically used in phylogenetic analyses. In this paper, we report on a simulation study that we performed to evaluate the consequences of using these new multiple sequence alignment methods in terms of the resultant phylogenetic reconstruction. We find that while alignment accuracy is positively correlated with phylogenetic accuracy, the amount of improvement in phylogenetic estimation that results from an improved alignment can range from quite small to substantial. We observe that phylogenetic accuracy is most highly correlated with alignment accuracy when sequences are most difficult to align, and that variation in alignment accuracy can have little impact on phylogenetic accuracy when alignment error rates are generally low. We discuss these observations and implications for future work.

Progressive supranuclear palsy (PSP) is a movement disorder with prominent tau neuropathology. Brain diseases with abnormal tau deposits are called tauopathies, the most common of which is Alzheimer’s disease. Environmental causes of tauopathies include repetitive head trauma associated with some sports. To identify common genetic variation contributing to risk for tauopathies, we carried out a genome-wide association study of 1,114 individuals with PSP (cases) and 3,247 controls (stage 1) followed by a second stage in which we genotyped 1,051 cases and 3,560 controls for the stage 1 SNPs that yielded P ≤ 10(-3). We found significant previously unidentified signals (P < 5 × 10(-8)) associated with PSP risk at STX6, EIF2AK3 and MOBP. We confirmed two independent variants in MAPT affecting risk for PSP, one of which influences MAPT brain expression. The genes implicated encode proteins for vesicle-membrane fusion at the Golgi-endosomal interface, for the endoplasmic reticulum unfolded protein response and for a myelin structural component.

The Alzheimer Disease Genetics Consortium (ADGC) performed a genome-wide association study of late-onset Alzheimer disease using a three-stage design consisting of a discovery stage (stage 1) and two replication stages (stages 2 and 3). Both joint analysis and meta-analysis approaches were used. We obtained genome-wide significant results at MS4A4A (rs4938933; stages 1 and 2, meta-analysis P (P(M)) = 1.7 × 10(-9), joint analysis P (P(J)) = 1.7 × 10(-9); stages 1, 2 and 3, P(M) = 8.2 × 10(-12)), CD2AP (rs9349407; stages 1, 2 and 3, P(M) = 8.6 × 10(-9)), EPHA1 (rs11767557; stages 1, 2 and 3, P(M) = 6.0 × 10(-10)) and CD33 (rs3865444; stages 1, 2 and 3, P(M) = 1.6 × 10(-9)). We also replicated previous associations at CR1 (rs6701713; P(M) = 4.6 × 10(-10), P(J) = 5.2 × 10(-11)), CLU (rs1532278; P(M) = 8.3 × 10(-8), P(J) = 1.9 × 10(-8)), BIN1 (rs7561528; P(M) = 4.0 × 10(-14), P(J) = 5.2 × 10(-14)) and PICALM (rs561655; P(M) = 7.0 × 10(-11), P(J) = 1.0 × 10(-10)), but not at EXOC3L2, to late-onset Alzheimer’s disease susceptibility.

OBJECTIVES: To determine whether genotypes at CLU, PICALM, and CR1 confer risk for Alzheimer disease (AD) and whether risk for AD associated with these genes is influenced by apolipoprotein E (APOE) genotypes.
DESIGN: Association study of AD and CLU, PICALM, CR1, and APOE genotypes.
SETTING: Academic research institutions in the United States, Canada, and Israel.
PARTICIPANTS: Seven thousand seventy cases with AD, 3055 with autopsies, and 8169 elderly cognitively normal controls, 1092 with autopsies, from 12 different studies, including white, African American, Israeli-Arab, and Caribbean Hispanic individuals.
RESULTS: Unadjusted, CLU (odds ratio [OR], 0.91; 95% confidence interval [CI], 0.85-0.96 for single-nucleotide polymorphism [SNP] rs11136000), CR1 (OR, 1.14; 95% CI, 1.07-1.22; SNP rs3818361), and PICALM (OR, 0.89; 95% CI, 0.84-0.94, SNP rs3851179) were associated with AD in white individuals. None were significantly associated with AD in the other ethnic groups. APOE ε4 was significantly associated with AD (ORs, 1.80-9.05) in all but 1 small white cohort and in the Arab cohort. Adjusting for age, sex, and the presence of at least 1 APOE ε4 allele greatly reduced evidence for association with PICALM but not CR1 or CLU. Models with the main SNP effect, presence or absence of APOE ε4, and an interaction term showed significant interaction between presence or absence of APOE ε4 and PICALM.
CONCLUSIONS: We confirm in a completely independent data set that CR1, CLU, and PICALM are AD susceptibility loci in European ancestry populations. Genotypes at PICALM confer risk predominantly in APOE ε4-positive subjects. Thus, APOE and PICALM synergistically interact.